

Objectives:

1. Karnaugh Map definition.
2. Karnaugh map construction.

 Two variables K-maps.

 Three variables K-maps.

 Four variables K-maps.
3. Summary

1) Karnaugh map definition
 The karnaugh map (k-map) is a graphical tool used to simplify (minimize) the logic

functions, so that it can be implemented with minimum number of gates (minimum

number of product terms and minimum number of literals).

 The K-map is used to convert a truth table to its corresponding logic circuit.

2) Karnaugh map construction

 Two variables K-maps.
 A two- variable function has four possible minterms, we can rearrange these

minterms into a karnaugh map:

Example:
 ̅

 The Karnaugh map for this function will be:

Note: we can easily from the k-map see which

minterms contain common literal:
 Minterms on the left and right sides contain ̅

and respectively.

 Minterms

0 0 ̅ ̅

0 1 ̅

1 0 ̅
1 1

0
y

0

x

1

1

)(x

)(x

)(y)(y

xy

yx yx

yx

m0 m1

m2 m3

0
y

0

x

1

1

)(x

)(x

)(y)(y

0 0

1 1

0
y

0

x

1

1

)(x

)(x

)(y)(y

 yx + xy =F

 Minterms in the top and bottom rows contain ̅ and respectively.

 Karnaugh map simplification:
 The K-map squares labeled so that horizontally adjacent square differ only in one

variable.

Example 1:- Imagine a two-variable sum of minterms, both of these minterms

appear in the top row of a karnaugh map, which means that they both contain

the literal ̅.

Example 2: ̅ –minimize it using K-map.

Solution:

 Both minterms appear in the right- side where is uncomplemented.

 Thus, we can reduce ̅ = just to .

 ̅ (̅)

 ̅ ̅ ̅ y

 x ̅ x y

Note: each case in the
truth table

corresponds to a

square in the K-map

0
y

0

x

1

1

)(x

)(x

)(y)(y

xy

yx yx

yx

0
y

0

x

1

1

)(x

)(x

)(y)(y

xy

yx yx

yx

 xyyxyxyxF

0 1

0 1

0
y

0

x

1

1

)(x

)(x

)(y)(y

yF

Example 3: ̅ ̅ ̅ –minimize it using K-map.

Solution:

 We have ̅ ̅ ̅ in the top row,

corresponding to ̅

 There's also ̅ in the right side

corresponding to .

 The result ̅ .

Using algebraic simplification:

 ̅ ̅ ̅ ̅ (̅)

 ̅ (̅) (̅) ̅

 Three- variables K-map

 For () there are minterms.

 Representation truth table using K-map

o Different versions:

Or

1 1

0 1

0
y

0

x

1

1

)(x

)(x

)(y)(y

x

y

A
BC

0A

A 1

00 01 11 10

CB CB CBBC

CBA CBA BCA CBA

CBA CBA ABC CAB

m0 m1

m4 m5

m3 m2

m7 m6

A
BC

0A

A 1

00 01 11 10

CB CB CBBC

BB

CCC

21 3 4

5 6 7 8

Grouping (ordering, looping)

 The groups can be 2, 4, or 8 adjacent squares:

 2 squares 1 variable can be canceled.

 4 squares 2 variables can be canceled.

 8 squares 3 variables can be canceled.

 Examples:-

Squares
Common

Literal (s)

(1) and (2) ̅ ̅

(2) and (3) ̅

(1) and (4) ̅ ̅

(1), (2), (5) and (6) ̅

(3), (4), (7) and (8)

(1), (2), (3) and (4) ̅

(5), (6), (7) and (8)

(1), (5), (4) and (8)

(Wrapping case is also adjacent)
 ̅

 To proof the wrapping case (the last one in the table) algebraically, we can write:

 ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅

 ̅(̅ ̅ ̅ ̅)

 ̅ (̅ (̅) (̅))

 ̅ (̅) ̅
 "Adjacency" includes wrapping around the left and right side.

 .

m0 m1

m4 m5

m3 m2

m7 m6

A
BC

0A

A 1

00 01 11 10

CB CB CBBC

wrapping adjacency (group)

Example 1: Simplify the following logical function using K-map.

 () ̅

Solution:
Step 1: the expression must be in a sum of minterms form, so we should convert it:(two

ways to do that):
1. Using logical rules (algebraically).

 ̅

 (̅) ̅ (̅) (̅)
 ̅ ̅ ̅ ̅ ̅

 ̅ ̅ ̅ ̅

2. Make the truth table and read the minterms.

 ̅

 () ̅ ̅ ̅ ̅

Step 2: fill one's (for the minterms) in karnaugh map; zero's for other squares.

Step 3: grouping (looping):

2 groups: (m1) and (m5)

 (m6) and (m7)

Step 4: simplify:

 ̅

 To proof the result:

inputs
Output Terms

replacement

 ()
0 0 0 0

0 0 1 1 ̅

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1 and ̅

1 1 0 1

1 1 1 1 and

0 1

0 1

0 0

1 1

x
yz

0

1

00 01 11 10

zy xy

 ̅ ̅ ̅ ̅

 ̅ (̅) (̅)
 ̅

Grouping the minterms:-
 Grouping together all the in the K-map.

o Make rectangles of (1, 2, 4, …).

o All the in the map should be included in at least one rectangle.

o Do not include any of the .
o Each group corresponds to one product term.

o Make each rectangle as large as possible.

o We can overlap the rectangles, if that makes them lager.

Example 2: Simplify the following logical function using K-map.

 ̅ ̅ ̅ ̅ ̅

Solution:

 ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅

Example 3: Simplify the following logical function using K-map.

 ̅ ̅ ̅ ̅ ̅ ̅
Solution:

1 0

1 0

0 0

1 1

A
BC

0A

A 1

00 01 11 10

CB CB CBBC

Note : Ignore !!

ABCBF

0 1

1 1

0 0

1 1

A
BC

0A

A 1

00 01 11 10

CB CB CBBC

1 Couple

1 Quad

CBAZ

Quad:

 ̅ ̅ ̅ ̅ (̅ ̅ ̅ ̅)

 (̅(̅) (̅)) (̅)

Couple:

 ̅ ̅ ̅ ̅ () ̅

