

Objectives:

1. Karnaugh Map definition.

2. Karnaugh map construction.

- Two variables K-maps.
- Three variables K-maps.
- Four variables K-maps.

3. Summary

1) Karnaugh map definition

- The karnaugh map (k-map) is a *graphical tool* used to simplify (minimize) the logic functions, so that it can be implemented with minimum number of gates (minimum number of product terms and minimum number of literals).
- > The K-map is used to *convert* a truth table to its corresponding logic circuit.

2) Karnaugh map construction

• Two variables K-maps.

A two- variable function has four possible minterms, we can rearrange these minterms into a karnaugh map:

x	y	Minterms
0	0	$\overline{x}\overline{y}$
0	1	$\overline{x}y$
1	0	xy
1	1	xy

Example:

 $F = xy + x\overline{y}$

> The Karnaugh map for this function will be:

Note: we can easily from the k-map see which *minterms contain common literal*:

• Minterms on the left and right sides contain \overline{y} and y respectively.

• Minterms in the top and bottom rows contain \overline{x} and x respectively.

- Karnaugh map simplification:
 - The K-map squares labeled so that *horizontally adjacent* square differ only in <u>one</u> variable.

Example 1:- Imagine a two-variable sum of minterms, both of these minterms appear in the top row of a karnaugh map, which means that they both contain the literal \overline{x} .

$$\begin{array}{c|c} y & (\overline{y}) & (y) \\ x & 0 & 1 \\ \hline 0 \\ (\overline{x}) & \overline{x y} & \overline{x y} \end{array} \rightarrow F = \overline{x y} + \overline{x}y = \overline{x}(\overline{y} + y) = x \\ \hline 1 \\ (x) & \overline{x y} & \overline{x y} \end{array}$$

Example 2: $f = \overline{x} y + xy$ –minimize it using K-map.

Solution:

- \triangleright Both minterms appear in the right- side where y is uncomplemented.
- > Thus, we can reduce $\overline{x} y + xy = \text{just to } y$.

$$f = \overline{x} y + xy = y(x + \overline{x}) = y$$

Example 3: $z = \overline{x} \overline{y} + \overline{x} y + xy$ -minimize it using K-map.

Solution:

We have $\overline{x} \overline{y} + \overline{x} y$ in the top row, corresponding to \overline{x}

There's also $\overline{x} y + xy$ in the right side corresponding to y.

 $\succ \qquad \text{The result } \mathbf{z} = \overline{\mathbf{x}} + \mathbf{y}.$

Using algebraic simplification:

 $z = \overline{x} \, \overline{y} + \overline{x} \, y + xy = \overline{x} \, (\overline{y} + y) + xy$ $= \overline{x} + xy = (x + \overline{x}) \, (\overline{x} + y) = \overline{x} + y$

• Three- variables K-map

- > For F(A, B, C) there are $\overline{2^3} = 8$ minterms.
- *Representation* truth table using K-map

Or

A E C	3 A' B' 00	<i>A' B</i> 01	А <i>В</i> 11	<i>А В′</i> 10	A B C) 00	01	11	10
<i>C</i> ′ 0	A' B' C'	A' B C'	ABC'	A B'C'	0	0	2	6	4
C 1	A' B' C	A' B C	ABC	A B' C	1	1	3	7	5
					L				I]

Grouping (ordering, looping)

- > The groups can be 2, 4, or 8 adjacent squares:
 - \checkmark 2 squares \longrightarrow 1 variable can be canceled.
 - \checkmark 4 squares \longrightarrow 2 variables can be canceled.
 - ✓ *8 squares* → 3 variables can be canceled.

> Examples:-

Squares	Common Literal (s)		
(1) and (2)	$\overline{A} \overline{B}$		
(2) and (3)	ĀC		
(1) and (4)	$\overline{A} \overline{C}$		
(1), (2), (5) and (6)	B		
(3), (4), (7) and (8)	В		
(1), (2), (3) and (4)	Ā		
(5), (6), (7) and (8)	A		
(1), (5), (4) and (8)	ī		
(Wrapping case is also adjacent)			

> To *proof* the wrapping case (the last one in the table) algebraically, we can write:

$$F = \overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + \overline{A} B \overline{C} + A B \overline{C}$$
$$= \overline{C} (\overline{A} \overline{B} + A \overline{B} + \overline{A} B + \overline{A} B)$$
$$= \overline{C} (\overline{B} (\overline{A} + A) + B (\overline{A} + A))$$
$$= \overline{C} (\overline{B} + B) = \overline{C}$$

> "*Adjacency*" includes wrapping around the left and right side.

Example 1: Simplify the following logical function using K-map.

 $F(x, y, z) = x y + \overline{y} z + x z$

Solution:

Step 1: the *expression must be in a sum of minterms form*, so we should convert it:(two ways to do that):

1. Using logical rules (algebraically).

$$F = xy + \bar{y}z + xz = xz (z + \bar{z}) + \bar{y}z (x + \bar{x}) + xz (y + \bar{y}) = xyz + xy\bar{z} + x\bar{y}z + x\bar{y}z + \bar{x}\bar{y}z + x\bar{y}z + x\bar{y}z = xyz + xy\bar{z} + x\bar{y}z + x\bar{y}z + \bar{x}\bar{y}z = xyz + xy\bar{z} + x\bar{y}z + x\bar{y}z + \bar{x}\bar{y}z = m_1 + m_5 + m_6 + m_7$$
2. Make the tryth table and read the minterms.
$$F = xy + \bar{y}z + xz$$

$$F(x,y,z) = \bar{x}\bar{y}z + x\bar{y}\bar{z} + xy\bar{z} + xyz = m_1 + m_5 + m_6 + m_7$$

$$F(x,y,z) = \bar{x}\bar{y}z + x\bar{y}\bar{z} + xy\bar{z} + xyz = m_1 + m_5 + m_6 + m_7$$

Step 2: fill one's (for the minterms) in karnaugh map; zero's for other squares.

xy and xz

Step 3: grouping (looping): **2** groups:

1

(m1) and (m5) (m6) and (m7)

Step 4: simplify:

1

1

1

$$F = x y + \overline{y} z$$

> To **proof** the result:

$$F = \overline{x}\overline{y}z + x\overline{y}z + xyz + xy\overline{z}$$

= $\overline{y}z(x + \overline{x}) + xy(z + \overline{z})$
= $\overline{y}z + xy$

Grouping the minterms:-

> Grouping together all the $\mathbf{1}_s$ in the K-map.

- *Make rectangles* of 2^{n} (1, 2, 4, ...).
- All the $\mathbf{1}_s$ in the map should be included in at least one rectangle.
- *Do not* include any of the $\mathbf{0}_s$.
- Each group corresponds to one product term.
- Make each rectangle *as large as possible*.
- We can *overlap the rectangles*, if that makes them lager.

Example 2: Simplify the following logical function using K-map.

$$Z = AB + A\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C}$$

Solution:

 $Z = AB + A\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} = AB\overline{C} + ABC + A\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C}$

Example 3: Simplify the following logical function using K-map. $Z = \overline{A}\overline{B}C + A\overline{B}\overline{C} + A\overline{B}C + AB\overline{C} + ABC$

Solution:

Quad:

$$A\overline{B}C + A\overline{B}\overline{C} + AB\overline{C} + ABC = A(\overline{B}C + \overline{B}\overline{C} + B\overline{C} + BC)$$
$$= A(\overline{B}(C + \overline{C}) + B(\overline{C} + C)) = A(\overline{B} + B) = A$$

Couple:

 $\overline{A}\overline{B}C + A\overline{B}C = \overline{B}C(A + A) = \overline{B}C$