
 

Objectives: 

1. Karnaugh Map definition. 
2. Karnaugh map construction. 

 Two variables K-maps. 

 Three variables K-maps. 

 Four variables K-maps. 
3. Summary 

1) Karnaugh map definition 
 The karnaugh map (k-map) is a graphical tool used to simplify (minimize) the logic 

functions, so that it can be implemented with minimum number of gates (minimum 

number of product terms and minimum number of literals). 

 The K-map is used to convert a truth table to its corresponding logic circuit. 

2) Karnaugh map construction  

 Two variables K-maps. 
 A two- variable function has four possible minterms, we can rearrange these 

minterms into a karnaugh map: 

 

Example: 
          ̅ 

 The Karnaugh map for this function will be: 

Note: we can easily from the k-map see which 

minterms contain common literal: 
 Minterms on the left and right sides contain  ̅ 

and   respectively. 
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 Minterms in the top and bottom rows contain  ̅ and   respectively. 

 

  

 

 

 

 

 Karnaugh map simplification: 
 The K-map squares labeled so that horizontally adjacent square differ only in one 

variable. 

Example 1:- Imagine a two-variable sum of minterms, both of these minterms 

appear in the top row of a karnaugh map, which means that they both contain 

the literal  ̅. 

 

 

 

 

 

 

Example 2:      ̅        –minimize it using K-map. 

Solution: 

 Both minterms appear in the right- side where   is uncomplemented. 

 Thus, we can reduce  ̅        = just to  . 
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Note: each case in the 
truth table 

corresponds to a 

square in the K-map 
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Example 3:       ̅  ̅     ̅         –minimize it using K-map. 

Solution: 

 We have  ̅  ̅     ̅  in the top row, 

corresponding to  ̅ 

 There's also  ̅        in the right side 

corresponding to  . 

 The result     ̅    . 

Using algebraic simplification: 
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 Three- variables K-map  

 For  (     ) there are      minterms. 

 Representation truth table using K-map 

o Different versions:  
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Grouping (ordering, looping) 

 The groups can be 2, 4, or 8 adjacent squares: 

 2 squares  1 variable can be canceled. 

 4 squares  2 variables can be canceled. 

 8 squares  3 variables can be canceled. 

 

 Examples:-  

Squares 
Common 

Literal (s) 

(1) and (2)   ̅ ̅ 

(2) and (3)  ̅  

(1) and (4)  ̅  ̅ 

(1), (2), (5) and (6)  ̅ 

(3), (4), (7) and (8)   

(1), (2), (3) and (4)  ̅ 

(5), (6), (7) and (8)   

(1), (5), (4) and (8) 

(Wrapping case is also adjacent) 
 ̅ 

 

 To proof the wrapping case (the last one in the table) algebraically, we can write: 

    ̅  ̅  ̅       ̅  ̅     ̅    ̅         ̅ 

   ̅( ̅  ̅      ̅    ̅       )  

   ̅ ( ̅ ( ̅    )      ( ̅     )) 

  ̅ ( ̅    )    ̅ 
 "Adjacency" includes wrapping around the left and right side. 
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Example 1: Simplify the following logical function using K-map. 

  (     )           ̅        

Solution: 
Step 1: the expression must be in a sum of minterms form, so we should convert it:(two 

ways to do that):  
1. Using logical rules (algebraically). 

          ̅         
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2. Make the truth table and read the minterms. 

                   ̅          
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Step 2: fill one's (for the minterms) in karnaugh map; zero's for other squares. 

 

 

 

 
 
 
 
 
 
Step 3: grouping (looping): 

2 groups:  (m1) and (m5) 

   (m6) and (m7) 

Step 4: simplify: 

          ̅   

 To proof the result: 

inputs 
Output Terms 

replacement  
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Grouping the minterms:- 
 Grouping together all the    in the K-map. 

o Make rectangles of    (1, 2, 4, …). 

o All the    in the map should be included in at least one rectangle. 

o Do not include any of the   . 
o Each group corresponds to one product term. 

o Make each rectangle as large as possible. 

o We can overlap the rectangles, if that makes them lager. 

 
Example 2: Simplify the following logical function using K-map. 

       ̅ ̅   ̅ ̅ ̅ 

Solution: 

       ̅ ̅   ̅ ̅ ̅     ̅        ̅ ̅   ̅ ̅ ̅ 

 
 
 
 
 
 
 
 
 
 
 
 
Example 3: Simplify the following logical function using K-map. 

   ̅ ̅    ̅ ̅    ̅     ̅       
Solution: 
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Quad: 
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Couple: 

 ̅ ̅    ̅   ̅ (   )   ̅  


