Digital System Design

Objectives:

1. Karnaugh Map definition.

2. Karnaugh map construction.

- Two variables K-maps.
- Three variables K-maps.
- Four variables K-maps.

3. Summary

1) Karnaugh map definition

> The karnaugh map (k-map) is a graphical tool used to simplify (minimize) the logic functions, so that it can be implemented with minimum number of gates (minimum number of product terms and minimum number of literals).
> The K-map is used to convert a truth table to its corresponding logic circuit.

2) Karnaugh map construction

- Two variables K-maps.

- A two- variable function has four possible minterms, we can rearrange these minterms into a karnaugh map:

\boldsymbol{x}	\boldsymbol{y}	Minterms
$\mathbf{0}$	$\mathbf{0}$	$\overline{\boldsymbol{x}} \bar{y}$
$\mathbf{0}$	$\mathbf{1}$	$\bar{x} y$
$\mathbf{1}$	0	$\mathrm{x} \overline{\mathrm{y}}$
$\mathbf{1}$	$\mathbf{1}$	$x y$

Example:

$F=x y+x \bar{y}$
$>$ The Karnaugh map for this function will be:

Note: we can easily from the k-map see which minterms contain common literal:

- Minterms on the left and right sides contain $\overline{\boldsymbol{y}}$ and y respectively.
- Minterms in the top and bottom rows contain \bar{x} and x respectively.

Note: each case in the truth table corresponds to a square in the K-map

- Karnaugh map simplification:
> The K-map squares labeled so that horizontally adjacent square differ only in one variable.

Example 1:- Imagine a two-variable sum of minterms, both of these minterms appear in the top row of a karnaugh map, which means that they both contain the literal \bar{x}.

Example 2: $f=\bar{x} y+x y$-minimize it using K-map.

Solution:

$>$ Both minterms appear in the right- side where \boldsymbol{y} is uncomplemented.
$>$ Thus, we can reduce $\overline{\boldsymbol{x}} \boldsymbol{y}+\boldsymbol{x y}=$ just to \boldsymbol{y}.

$$
f=\bar{x} y+x y=y(x+\bar{x})=y
$$

Example 3: $z=\bar{x} \bar{y}+\bar{x} y+x y$-minimize it using K-map.

Solution:

$>$ We have $\overline{\boldsymbol{x}} \overline{\boldsymbol{y}}+\overline{\boldsymbol{x}} \boldsymbol{y}$ in the top row, corresponding to $\overline{\boldsymbol{x}}$
$>$ There's also $\overline{\boldsymbol{x}} \boldsymbol{y}+\boldsymbol{x y}$ in the right side corresponding to \boldsymbol{y}.
$>\quad$ The result $\mathbf{z}=\overline{\boldsymbol{x}}+\boldsymbol{y}$.

Using algebraic simplification:

$z=\bar{x} \bar{y}+\bar{x} y+x y=\bar{x}(\bar{y}+y)+x y$
$=\bar{x}+x y=(x+\bar{x})(\bar{x}+y)=\bar{x}+y$

- Three- variables K-map
$>$ For $\boldsymbol{F}(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C})$ there are $\mathbf{2}^{\mathbf{3}}=\mathbf{8}$ minterms.
$>$ Representation truth table using K-map
- Different versions:

Or

	$A^{\prime} B^{\prime}$ 00	$A^{\prime} B$ 01	$A B$ 11	$A B$ 10
$C^{\prime} 0$	$A^{\prime} B^{\prime} C^{\prime}$	$A^{\prime} B C^{\prime}$	$A B C^{\prime}$	$A B^{\prime} C^{\prime}$
C 1	$A^{\prime} B^{\prime} C$	$A^{\prime} B C$	ABC	$A B^{\prime} C$

Grouping (ordering, looping)

$>$ The groups can be 2, 4, or 8 adjacent squares:
$\checkmark 2$ squares $\longrightarrow 1$ variable can be canceled.
$\checkmark 4$ squares $\longrightarrow 2$ variables can be canceled.
$\checkmark 8$ squares $\longrightarrow 3$ variables can be canceled.
> Examples:-

Squares	Common Literal (s)
(1) and (2)	$\overline{\boldsymbol{A}} \overline{\boldsymbol{B}}$
(2) and (3)	$\overline{\boldsymbol{A}} \boldsymbol{C}$
(1) and (4)	$\overline{\boldsymbol{A}} \overline{\boldsymbol{C}}$
(1), (2), (5) and (6)	$\overline{\boldsymbol{B}}$
(3), (4), (7) and (8)	\boldsymbol{B}
(1), (2), (3) and (4)	$\overline{\boldsymbol{A}}$
(5), (6), (7) and (8)	\boldsymbol{A}
(1), (5), (4) and (8) (Wrapping case is also adjacent)	$\overline{\boldsymbol{C}}$

$>$ To proof the wrapping case (the last one in the table) algebraically, we can write:

$$
\begin{aligned}
& F=\bar{A} \bar{B} \bar{C}+\boldsymbol{A} \overline{\boldsymbol{B}} \overline{\boldsymbol{C}}+\overline{\boldsymbol{A} B} \overline{\boldsymbol{C}}+\boldsymbol{A B} \overline{\boldsymbol{C}} \\
& =\overline{\boldsymbol{C}}(\overline{\boldsymbol{A}} \overline{\boldsymbol{B}}+\boldsymbol{A} \bar{B}+\overline{\boldsymbol{A}} \boldsymbol{B}+\boldsymbol{A B}) \\
& =\overline{\boldsymbol{C}}(\overline{\boldsymbol{B}}(\overline{\boldsymbol{A}}+\boldsymbol{A})+\boldsymbol{B}(\overline{\boldsymbol{A}}+\boldsymbol{A})) \\
& =\bar{C}(\bar{B}+B)=\bar{C}
\end{aligned}
$$

$>$ "Adjacency" includes wrapping around the left and right side.

Example 1: Simplify the following logical function using K-map.

$$
F(x, y, z)=x y+\bar{y} z+x z
$$

Solution:

Step 1: the expression must be in a sum of minterms form, so we should convert it:(two ways to do that):

1. Using logical rules (algebraically).

$$
\begin{aligned}
& F=x y+\bar{y} z+x z \\
& =x z(z+\bar{z})+\bar{y} z(x+\bar{x})+x z(y+\bar{y}) \\
& =x y z+x y \bar{z}+x \bar{y} z+\bar{x} \bar{y} z+x y z+x \bar{y} z \\
& =x y z+x y \bar{z}+x \bar{y} z+\bar{x} \bar{y} z \\
& =m_{1}+m_{5}+m_{6}+m_{7}
\end{aligned}
$$

2. Make the tryth table and read the minterms.

Step 2: fill one's (for the minterms) in karnaugh map; zero's for other squares.

Step 3: grouping (looping):
2 groups:
(ml) and (m5)
(m6) and (m7)
Step 4: simplify:

$$
F=x y+\bar{y} z
$$

$>$ To proof the result:

$$
\begin{aligned}
& F=\bar{x} \bar{y} z+x \bar{y} z+x y z+x y \bar{z} \\
& =\bar{y} z(x+\bar{x})+x y(z+\bar{z}) \\
& =\bar{y} z+x y
\end{aligned}
$$

Grouping the minterms:-

$>$ Grouping together all the $\mathbf{1}_{s}$ in the K-map.

- Make rectangles of $2^{\mathrm{n}}(1,2,4, \ldots)$.
- All the $\mathbb{1}_{s}$ in the map should be included in at least one rectangle.
- Do not include any of the $\mathbf{0}_{s}$.
- Each group corresponds to one product term.
- Make each rectangle as large as possible.
- We can overlap the rectangles, if that makes them lager.

Example 2: Simplify the following logical function using K-map.

$$
Z=A B+A \bar{B} \bar{C}+\bar{A} \bar{B} \bar{C}
$$

Solution:

$Z=A B+A \bar{B} \bar{C}+\bar{A} \bar{B} \bar{C}=A B \bar{C}+A B C+A \bar{B} \bar{C}+\bar{A} \bar{B} \bar{C}$

Example 3: Simplify the following logical function using \boldsymbol{K}-map.

$$
Z=\bar{A} \bar{B} C+A \bar{B} \bar{C}+A \bar{B} C+A B \bar{C}+A B C
$$

Solution:

Quad:

$$
\begin{aligned}
& A \bar{B} C+A \bar{B} \bar{C}+A B \bar{C}+A B C=A(\bar{B} C+\bar{B} \bar{C}+B \bar{C}+B C) \\
& =A(\bar{B}(C+\bar{C})+B(\bar{C}+C))=A(\bar{B}+B)=A
\end{aligned}
$$

Couple:

$$
\bar{A} \bar{B} C+A \bar{B} C=\bar{B} C(A+A)=\bar{B} C
$$

